
NASA Lewis Research Center

Description of a MIL-STD-1553B
Data Bus Ada Driver for the

LeRC EPS Testbed

Michael A. Mackin

Overview 4

._1'_ ..o.o,......o.**o.4 o..o....°..o..*o.., .. ,.......*oo.o •o..... °......o°...°...°..... o..°*....,.°o,,..°....°..° °o4

Description of Operating Environment ... 4

1553B Data Bus Operation 7

Bus Controller .. 7

Remote Terminal .. 7

Operating Concept 8

Program Startup ... 8

RT Initialization ... 9

BC Initialization ... 9

Normal BC Operation ... 9

Normal RT Operation ... 9

Message Delivery and Routing .. 9

Preliminary Design 11

Subsystem Decomposition ... 11

Network Driver ... 13

Network Utilities .. 15

Modifications to Message Package .. 16

Router Task Modifications .. 16

Sync Controller ... 17

Preliminary Design Module Diagram .. 18

Detailed Design 19

Subsystem Decomposition ... 19

Network Driver ... 20

Network Utilities .. 27

Low Level 1553 Driver ... 27

Low Level 1553 Driver Dora/led Design ... 32

Diagnostic and Utility Packages .. 35

Test Results 36

Conclusion 37

, /

Overview

Abstract

This document describes the software designed to provide communication between control computers in
the NASA Lewis Research Center Electrical Power System Testbed using MIL-STD-1553B. The software
drivers are coded in the Ada programming language and were developed on a MSDOS-based computer
workstation.

The Electrical Power System (EPS) Testbed is a reduced-scale prototype space station electrical power

system. The power system manages and distributes electrical power from the sources (batteries or
photovoltaic arrays) to the end-user loads. The electrical system primary operates at 120 volts DC, and the

secondary system operates at 28 volts DC.

The devices which direct the flow of electrical power are controlled by a network of six control computers.
Data and control messages are passed between the computers using the MIL-STD-1553B network. One of

the computers, the Power Management Controller (PMC), controls the primary power distribution and
another, the Load Management Controller (LMC), controls the secondary power distribution. Each of
these computers communicates with two other computers which act as subsidiary controllers. These
subsidiary controllers are, in turn, connected to the devices which directly control the flow of electrical

power.

Description of Operating Environment
The Ada driver for network communication was integrated into a pre-existing hierarchical control system.

The control system is respous_le for data acquisition, data filtering, status monitoring, and for
periodically updating an operator display screen. The system is also responsible for delivery of operator
commands (e.g. setpoint changes) to the power devices. All communication on the control networks
(computer-to-computer and computer-to-device) is done using the MIL-STD-1553B protocol.

A more detailed description of the EPS testbed and its operation is given in [1]. The control scheme and

its software implementation are described in [2] and [3].

General Design Constraints

The existing Ada control program that is currently is use in the EPS testbed operates by muting messages
among a collection of software objects. Each computer is configured with a different mix of executing
objects. Objects operate by interpreting and processing the instructions contained within a received

Abstract
Overview 1

message. Messages which are destined for remote objects are delivered, via an inter-processor
communication subsystem, to the control program executing on another computer.

A high-level module diagram of the existing EPS control software is shown in figure 1. Objects which
control the power devices are contained within the Device Control Subsytem. Objects which display status
or buffer user commands are in the Command Acquisition & Status Subsystem. Code for communication
between contIol computers resides in the Inter-Processor Communication Subsystem. The _ynchronous
Data Acquisition Subsystem acquires and stores data that is periodically obtained from the testbed. The
Messaging Subsystem ties the other subsystems together and eusmcs the reliable delivery of control

messages.

Subsystem j L S&ubSsytasttUSm J L DSa%bAsy%l_iSimti°nJ

(o"o'noi

Communication

Figure 1 - EPS Controller Module Diagram

Modifying the existing EPS software so that the MIL-STD-1553B protocol is used entails changing the
program's Inter-Processor Communication subsystem and incorporating a new 1553 driver routine. Since
the existing program was designed for use with a peer-to-peer communication network, and the 1553B
uses a master-slave protocol instead, changes were made to the program's Messaging subsystem as well.

SoRware Compatibility Requirements

The following requirements are necessary to minimize effects of the new network driver on the existing
Ada software.

• Packet Size - The 1553 driver must be capable of sending a continuous block of data up to 1800 bytes
long. This was the maximum block size used with the previous network driver and is maintained in
the new driver to ensure compatibility.

• Message Routing - The new control program must maintain the capability of inter-processor message
routing. Previously, the control computers were able to broadcast messages to remote objects without

Overview Description of Operating Environment

specifying the node on which they resided. The 1553 protocol can transmit broadcast commands, but
there is no explicit means for the bus controller to determine ff each remote terminal is ready to
receive a broadcast message at the time it is issued. If a remote terminal is not ready, then an error
will occur and the message will have to be re=transmitted.

An alternative to broadcasting messages is address lookup and routing. In this scheme the bus
controller knows the network address of each software object and directs messages to the node on

which the object resides. Messages originating at the remote terminals may be passed only to the bus
controller.

Messages must flow from the bus controller to the remote terminals, and from the remote terminals to
the bus controller. There is no need for the remote terminals to communicate between each other.

Other Software Requirements

• Timing - The 1553 driver design must allow each remote terminal to transmit a message to the bus
controller at least once per second. The bus controller must be capable of obtaining at least one

message from each of its remote terminals in one second.

• Network Addresses - It must be possible to assign each computer on a 1553 network a unique network
address. The PMC and LMC must be bus controllers.

• Development Environment- The Ada language must be used to generate the new 1553 driver.

Hardware Requirements

• 1553 Hardware - The control program operates on a Compaq 386 computer and uses a DDC BUS-
65515 1553 card for the inter-processor communication. The DDC card is a memory-mapped card
that uses an 8 ICoytearea of memory space.

Overview Description of Operating Environment

1553B Data Bus Operation

This section gives a brief overview of the 1553 protocol, higlflighting those features that pertain to the
design of the testbed control program.

Bus Controller

The 1553B network communication protocol is primarily master-slave. A master-slave network protocol
operates by having a single node, the master, initiate every communication transaction The othernodes
on the network, the slaves, respond to the master's commands. In the 1553 standard, node masters are
known as bus controllers and node slaves are remote terminals _].

The computer designated as 1553 bus controller is master of the 1553 bus. The 1553 standard allows the

bus controller to communicate with up to 30 remote terminals using network addresses 1 - 30. Network
address 31 is reserved for broadcast messages to all remote terminals. In the testbed, the bus controller
issues just three types of commands: controller-to-RT transfers, RT-to-controller tran_ers, and mode
commands. The remote terminals respond with a status word to each of these commands. The status word
indicates whether the commands were received correctly. There may be only one active bus controller.

In a controller-to-RT command or a RT-to-controller command the bus controller specifies a network
subaddress and a data word count. The subaddress is in the range 1 - 30. The word count range is I - 32.
No more than 32, 16-bit words may be transmitted with each 1553 command.

Mode commands are used tOissueSpecial commands to the remote terminals. Mode commands may be
broadcast to all the remote terminals, or directed to a particular one.

Remote Terminal

A remote terminal responds to commands issued by the bus controller. The response normally consist of a
stream of 0 - 32 data words and a status word, which indicates the success/failure of the transfer.

The maximum memory available for data transfer from the remote terminal is

(30 subaddresses) x (32 words/subaddress) x (2 bytes/word) = 1920 bytes.

This memory area will be known in this document as the remote terminal's message space. The message
space is hardware mapped to a flee segment of local memory.

The controller-to-RT command and the RT-to-controller command provide the bus controller with the
capability of writing or reading any word of memory within the remote terminal's message space. The bus
controller accesses a particular remote memory location with a combination of random and sequential
access techniques. The bus controller uses the 1553 subaddress to select one of 30 records of data. Each

record contains 32 data words. The bus controller sequentially reads/writes each word within the record
until it obtains/updates its target word.

1553B Data Bus Operation
4

Bus Controller

Operating Concept

This section describes the general operation of the 1553 driver. Refer to figure 2 for a diagram of the
various sot_are operating modes. The modes are described in more detail below.

Program Startup
When execution of the testbed control program is started, the 1553 network is inactive and waiting to be

placed into either bus controller (BC) or remote terminal (RT) operating mode.

The network driver so.rare may be configured to operate in either bus controller or remote terminal
mode. Once the mode has been chosen it may not be changed unless the control program is restarted. Only
one controller on a 1553 network may be chosen to be bus controller. Bubble 1 of figure 1 represents the
uninitialized state of the 1553 driver. No network transactions may occur until the driver is initialized.
Initialization causes the driver to enter either BC Initialization state (bubble 2) or RT Initialization state
(bubble 4). A user command is used to specify the operating mode as well as a network address and node
identifier (if needed).

Mode

Network Scan Complme_

Figure 2 - 1553 driver operating modes

Program StartupOperating Concept
5

RT Initialization

A network address and node identifier are provide by the user when the driver is initialized to remote
terminal mode. The network address specifies the RT address to which the node will respond (1-30). The
node identifier is saved for use by the network's bus controller and used for message muting. The software
enters RT Normal mode after initialization has completed.

BC Initialization

When the controller is started as a network bus controller it scans through all 1553 addresses looking for
active RTs. For this reason the bus controller is not initialized until after all active remote terminals have
been initialized. Active RTs will respond to the scan with a node identifier. The node identifiers are saved
for use in routing future messages to the correct node. The soRware enters BC Normal mode after
initialization has completed.

Normal BC Operation
The operation of the bus control software under normal conditions consists of

• Periodically scanning RTs for new messages.

• Reading new messages from RTs.

• Delivering messages to RTs.

The message scans are performed at a rate which is fast enough to receive at least one message from each
active RT per second (see General Design Constraints).

Before the start of each scan, the BC issues a global system synchronization signal which initiates the
cyclic data acquisition process on the RTs (as described in [3]).

Normal RT Operation
The operation of the remote terminals is similar to that of the bus controller. Periodically, the RTs will

• Store any message destined for the bus controller in 1553 message space (ff space is available).

• Check for a message from the BC.

Message Delivery and Routing
Local message routing is performed automatically by the control program's Messaging subsystem.
Delivery of remote messages (thosedestinedfor objects located on a different computer than the

originatng object) is performed via a muting table resident on the bus controller.

The muting table is a list of entries containing the names of remote objects together with the RT address
of the node on which they reside. The driver software on the bus controller automatically scans the 1553
network and installs entries containing the node ID and address of each RT on the network into the
muting table. This activity is done within bubble 2 of figure 2. Additional routing information may be
entered into the table via operator commands.

On a bus controller, messages received by the testbed's control program are examined to determine the

location of their destination object. Messages destined for local objects are delivered via task rendezvous.
Addresses of messages destined for non-resident objects are determined by using the routing table. If no
entry for a non-resident object is found, then the message is discarded.

Operating Concept
6

RT Initialization

On a remote terminal, any message destined for a non-resident object is delivered to the bus controller. If
the object does not reside on the bus controller, then the message is discarded. Local messages are
delivered in the usual way.

Operating Concept
7

Message Delivery and Routing

Preliminary Design

This section describes the incorporation of a new 1553 driver into the high-level design of the existing
Ada control code.

Subsystem Decomposition
A refinement of a portion of the software design, first introduced in figure 1, is given in the module
diagram of figure 3. This diagram shows the key components of the software's Messaging and Inter-
Processors Communication subsystems. These subsystems are the ones affected by changes to the system's
communication network. The design shown in figure 3 was originally designed for a system using a peer-
to-peer communication protocol.

Arrows are used in the diagram to indicate compilation order. An arrow is directed from higher-level
modules towards the lower-level modules upon which they depend. An Ada package is represented by a
large rectangle with smaller oval bubbles and thin rectangles protruding from it. Ada tasks are shown by
shaded diamonds with thin rectangles. The thin rectangles represent public procedures or entry points,
and the ovals represent public type specifications.

The Messaging subsystem contains the software objects, as well as the Message_Package module, which
performs all inter-object communication. The objects serve as an interface between the higher-level
soRware subsystems and the Messaging subsystem. The Message_package uses procedures provided by
the Network_Package to deliver messages to objects residing on remote controllers.

One object shown within the Messaging subsystem of figure 3 is responsible for directing and controlling
message routing. This object, the Router, must operate differently for a master-slave network than for a
peer-to-peer one. For a master-slave network the router must know the address of each remote objecL It
may not broadcast messages to unspecified addresses as it may for a peer-to-peer network. For this reason,
an additional module, the Network_UtilitiesPockage, has been added to the system to maintain a remote

messaging capability when a master-slave protocol is used (see figure 4).

In figure 4, new procedure interfaces are indicated by thicker lines. Note that the most commonly used
interfaces (between the objects and the Message_Package) did not change. New type specifications, as
indicated by a dark type oval, and additional procedures, as indicated by a clarkprocedure rectangle, do
require the recompilation of both the Messaging and Inter-Processor Communication subsystems.

Preliminary Design
8

Subsystem Decomposition

Figure 3 - Subsystem Decomposition for Peer-to-Peer Network

Messaging
Subsystem

Inter-Processor
Communication

Subsystem

Figure 4 - Subsystem Decomposition for Master-Slave Network

Preliminary Design Subsystem Decomposition

Figure 4 also shows the addition of a new object, the Sync_Controller. The Sync_Controller manages the
execution of those objects responsible for periodic data acquisition. New procedures have been added to
Network_Package to provide information from the master bus controller about whether or not periodic
data acquisition should occur.

The remaining part of this section describes the new software components, as well as the changes to old
components, that are shown in figure 4. The components descn'bed are:the Network Driver (the
Network_Package), the Network Utilities (the Network_Utilities_Package), the Message Package, the
Router, and the Sync..Controller.

Network Driver

The 1553 network driver provides the routines that the control program uses to manage message
transactions over the network.

General Routines

The general purpose routines are

* Initialize Initialize the network. Set the local network card to either BC or RT mode. For

RT mode, the user provides a network address and a node identifier. For BC

mode, the software will scan the network and find any initialized RTs. The
identifiers from these RTs are stored and may be retrieved via the Network__IDs
routine.

• Network_IDs Retrieve a table containing network identifiers of all active RTs attachedto this
bus controller.

• Get Obtain data packets from the network. Wait until a packet destined for this
local node arrives and then return with it. Only one task may access this
procedure at a time (i.e. concurrent access is NOT allowed).

• Read Extract data from a packet. Obtain data from a previously received packet.

• Write Store data in a packet. Save a data item into a packet for use in a future
transmission.

• Transmit Transmit a packet. Transmit a data packet over the network to a particular RT,
or from a RT to the BC. Several tasks may access this procedure concurrently.

Synchronization Routines

These are routines to initiate and control the low level data scans on the RTs

• Synchronize The bus controller notifies all RTs to operate synchronously.

• Unsynchronize The bus controller notifies all RTs to operate asynchronously

• GetSync_Mode Obtain the operating mode of RTs.

Status Routines

These routines provide board status information

• Local Address Obtain the local 1553 address.

• Network_Started Obtain 1553 board status (initialized/not initialized).

Preliminary Design
10

Network Driver

1553 Monitor

The 1553 Network Driver contains a monitoring task which prevents concurrent access of the 1553
board's hardware registers and memory by more than one Ada task.

Messages to be transmitted to remote nodes are routed through the 1553 monitor and are handled in a
first-in-first-out manner.

The 1553 Monitor stores messages received from remote nodes in a temporary buffer. The contents of the
buffer are acquired from the monitor by invoking the get procedure. Only one task is permitted to receive

messages from the 1553 monitor. This task is responsible for distributing the message to the correct local
object

The 1553 monitor is responsible for performing the periodic operations described in section Normal BC

Operation and in section Normal RT Operation.

Module Diagram

A pictorial representation of the Network Driver package, showing its public procedures and internal task,
is shown in figure 5.

Figure 5 - Network Driver Package

Exceptions

Problems that may occur when the package routines are called include

• Initialize Raise Already_Initialized exception to indicate that the board has already been
initialized.

• Network_lDs Raise Usage_Error if board has not been initialized to BC mode.

• Get An indefinite delay will occur if the 1553 board malfunctions.

• Read Raise Underflow if an attempt is made to read past the end of the available
data.

• Write Raise Overflow ff data is stored past the allowable maximum size.

Preliminary .Design
11

Network Driver

• Transmit

• Synchronize

• Unsynchronize

• Get_5_mc_Mode

• Local Address

• Network Started

Raise Transmit_Error ff an inactive address has been specified as the
destination address, or if an RT is attempting to transmit to another RT.

Raise Usage_Error ffthe local board is not operating in bus controller mode.

Raise Usage_Error ff the local board is not operating in bus controller mode.

Nothing should go wrong.

Nothing should go wrong.

Nothing should go wrong.

Network Utilities

The network utilities package provides routines that are used primarily for message muting. The package
includes procedure that operate on an internal muting table. The muting table consists of a list of entries
indexed by object identifiers. Each entry contains the text identifier and the network address where the
objectresides.

Routines

• Initialize

• Show

• Add Alias

• Add Item

• Address_Of

Used by the bus controller to obtain and initialize the table of active RTs.

Display the routing table on the operator's screen.

Add an alias to an existing entry. Allows a node to be identified by more than
one nanle.

Add an item to the routing table.

Obtain the node address of a particular item.

Semaphore Task

The Network Utilities Package contains an Ada task to guarantee sequential access to the remote routing

table. Sequential access is necessary since attempts to access the table may occur concurrently by more
than one task. Most tasks access the table while sending a remote message, but the table may also be
accessed, to be updated or changed through operator commands, by the Router Task. The task used to
provide sequential access and mutual exclusion is called the Semaphore Task.

Module Diagram

A pictorial representation of the Network Utilities package is shown in figure 6.

I

Figure 6 - Network Utilities Package

Preliminary Design
12

Network Utilities

Exceptions

Some Network Utility procedures may generate Ada code exceptions. The exceptions and the conditions
that cause them are identified below.

• Initialize Assuming that only a node setup as an BC calls this routine, nothing should go
wrong.

• Show Nothing should go wrong.

• Add_Alias Rinses Lookup_Error ff the item that requires an alias is not already present in
the routing table.

• Add_Item Nothing should go wrong.

• Address_Of I_ses Lookup_Error ff the item is not present in the routing table.

Modifications to Message Package

The control program's Message Package is respons_le for directing messages between active software
objects. It must access the 1553 network to deliver messages to those objects which are executing on
remote nodes.

Few changes were made to the public interface defined between the Message_Package and the other
software components in the testbed control program. The biggest change was made to a field within the

public Message structure.

The Message structure contains a field which was defined to hold the node address of the controller where
the message originated. This field was, in previous versions of the control program, initialized with the
value null. The control program interpreted this null value to indicate that a broadcast was to occur if no
local object could be found. However, since broadcasting is not allowed in the 1553 version of the control
program, the null initialization was eliminated. Instead, the field is assigned the 1553 address of the local
node.

Router Task Modifications

The Router Task is an existing element of the testbed Control Program. Modifications enable the task to

process commands which initialize, control, and display the status of the 1553 driver.

t553 Commands

The following commands were added to the existing Router object.

• START NETWORK, mode

mode = BC [RT, rt_address, rt_id
rt_.address = 112131... 130
rt_id = Any six byte or less node identifier.

The "START NETWORK" command is used by the operator to initialize the 1553 network. The
command "START NETWORK, BC" notifies the software that the board will be operating in BC

mode. For operation of the software in RT mode at address 1 and with node identifier "MBC"
use: "START NETWORK, RT, 1, MBC'. The "START NETWORK" command may be issued

only once. All RTs on the system must be initialized before the BC is started. The RTs may
be initialized automatically from the DOS command line if the control program is invoked in the
following manner:

CONTROL_ RTR, START NETWORK, RT,1,MBC

(Note: "CONTROL_" is the DOS file name of the executable Ada control program)

Preliminary Design
13

Modifications to Message Package

• SHOW REMOTES

This command causes the muter to invoke the Network_Utilities package and display the current

muting table.

• REMOTE ALIAS,existing_name, alias

existing_name = text string of object preexisting in the routing table.
alias = new text string to be associated with the existing object

Use the "SHOW REMOTES" command to see a list of existing remote objects.

• SYNCHRONIZE

CausesallRTs tobeginsynchronousdatacollection.

• UNSYNCHRONIZE

CausesRTs toceasesynchronousdatacollection.

Exceptions

These are the exceptions that may be raised by the provided router commands. The exception handler
within the Router task body handles the exceptions and displays an error message.

• START NETWORK Network board is inactive or not operating.

• SHOW REMOTES Nothing should go wrong.

• REMOTE ALIAS Name to be aliased does not exist.

• SYNCHRONIZE Local node is operating as an RT instead ofa BC.

• UNSYNCHRONIZE Local node is operating as an RT instead of a BC.

Sync Controller
The Sync Controller is a task which is responsible for the execution and control of those tasks which
perform the periodic data acquisition. It is active on remote terminal nodes only. The Sync Controller
issues commands to the periodicacquisition tasks based upon the operating state obtained from the
NetworkDriver routine Get_Sync_State. Get_Sync_State returns a value which indicates whether the
remote terminal is to obtain data in a synchronous or an asynchronous manner.

Preliminary Design
14

Sync Controller

Preliminary Design Module Diagram

If the proceduresdefined in the sectionsaboveare used,a morn detailedmodulediagram thanthat shown
in figure 4 is poss_le. The more detailed high-level module diagram is presented in figure 7. Arrows
show how the package procedures are invoke(L The procedure transmit, for example, is called from some
procedure within Message_Package. Procedure get is called by the Network_Monitor Task, which is also
within Message_Package.

Figure 7 - Preliminary Design Module Diagram

Preliminary Design
15

Preliminary Design Module Diagram

Detailed Design

This section presents the internal design of the software modules previously identified in section
PreliminaryDesign as well as the design of any new packages necessary for the implementation of the
detailed design.

Subsystem Decomposition

In the EPS testbed software, detailed design features are implemented in Ada package bodies. Ada bodies
are represented in a module diagram by a shaded icon shown partially obscured beneath the package
specification icon. In figure 8, new packages have been introduced into the module diagram shown in
figure 4.

Figure 8 - Detailed Design Module Diagram

Detailed Design Subsystem Decomposition
16

New modules in the diagram are: the Low_LeveL 1553 package, the Diagnostic_Utilities package, and the
General_Utilities package. The Low_Level_1553 package provides routines for co--g, transmitting,
and receiving 1553 messages, the Diagnostic_Utilities package provides routines that are useful for
obtaining timing and diagnostic information from a logic analyzer, and the General_Utilities icon
represents a number of Ada utility packages which provide routines for sorting and indexing tables of
data. The Diagnostic_Utilities and General_Utilities packages are not part of the Inter-Processor
Communication subsystem, per se, but may be used by any module within the software system.

Figure 8 also shows, in addition to the new packages, the package bodies for the Message_Package, the
Network_Package, the Network_Utilities package, and for the Low_Level_1553 package.

The compilation dependencies among the new packages and the package bodies are indicated in the
diagram by the darker arrows.

Network Driver

This section describes the internal design of the 1553 network driver. The Network Driver makes use of a
separate package of routines, the 1553 Low Level Driver, to manipulate the buffers and memory locations
associated with the 1553 board (as shown in figure 8).

Allocation of 1553 Resources

The network driver must allocate and manage the 1553 traffic so that the control program messages are
reliably delivered among the control computers. Since the 1553 protocol provides a limited number of
subaddress locations, they must be carefully allocated and assigned.

The 1553 driver allocates the RT subaddresses to those functions specified in table 1. Note that subaddress
2 is used for two separate functions.

, Semaphore for BC-To-RT Messages

Semaphore for RT-To-BC Messages

i:i:i:i:i:i:i:i:i:::i-i-:_.:i:i:_:i:i_i_ili._iii_,<ilil_ii!iiiii_ii!i._iii::iiiii:i:iiii:i:.:i_i_:-_._i:::i::!i::.:iiii'i'i_i:i_i_i_._d/_g..'.__i.::_iiiiiiii'ii:i

:::.::::.:....'.:_::::::_f_.._::::¢:::::::.-:r.

1 1

2 1

Node Identifier 2 2 - 5

Data Packet (Block I) 3 1 - 32

Data Packet (Block 2) 4 1 - 32

...... 1 - 32

Data Packet (Block 28) 30 1 - 32

Table 1 - Subaddress Assignment.

Client/Server Semaphores

Client/Server semaphores are used to insure the reliable delivery of long packets of data between the BC
and RTs, to regulate the data transfer rate, and to prevent buffer overflow. A server is a computer that is
attempting to deliver a message to a remote node. The client is the receiving computer. Basically, the
semaphores ensure that clients do not process messages before they have been completely delivered, and
that servers don't deliver new messages until old ones have been processed.

Two subaddresses on each RT are reserved for use by these semaphores. Each controls the data flow in a

single direction. See table 2 for the subaddress assignments.

Network DriverDetailed Design
17

BC-To-RT RT BC 1

RT-T_BC BC RT 2

Table 2 - Client/Server Semaphores

Start

These _ are known as the buffer status semaphores. The semaphores are used to indicate the
current status of the RT's transmit and receive buffers and to prevent the bus controller from overwriting
or reading a buffer that is not yet ready. One semaphore regulates the buffer used for messages transmitted
from the BC to the RT, and the second semaphore regulates messages destined for the BC from the RT.
Notice that the controller at the message source is the server and that the controller at the message
destination is the client.

Signal Buffer

Ava_able

Figure 10 - Client Operation

Start

Signal

>/ _.;,_^._<Buffer_ Full / _...

I . D.ata. / Buffer

Available

Fig_-e 9 - Server Operation

Client operation is shown in figure 10, and server operation in figure 9.

Figure 10 shows how a client controller operates while it is waiting to receive a message for processing.
Initially the controller is idle; it is waiting for a change in the buffer status semaphore. Once the
semaphore changes to indicate that a buffer of data is available, it is read and processed. After processing
the data, the status semaphore is reset by the client, indicating an empty buffer.

Figure 9 shows the server state transitions that occur when data becomes available for transmission. If the

data is available and an empty buffer is available, then the server fills the buffer with data and sets the
buffer status semaphore. New data may again be copied to the buffer after the client has read the data and
reset the semaphore.

Detailed Design
18

Network Driver

Network Package Detailed Design

1553 Monitor - BC Mode

The 1553 monitor is an Ada task which controls access to the 1553 board and performs the

periodicoperations necessary to maintain network message flow. Figure 11 shows the typical
operation of the monitor task over time.

I I I

[

III IT I III

3 >l< 4 "" 5i

Time ,-_

Figure l 1 - BC cycle

The large upright arrows mark the start and end points of a typical cycle. The cycle repeats
continuously, and is divided into six regions, as indicated on the figure. The operations

performed in each region arc

1. Broadcast synchronization command - At the start of each cycle, the bus controller
broadcasts a 1553 synchronization command. This signal is transmitted to each RT
simultaneously, indicating the start of a new BC cycle. The BC uses a standard 1553 mode
command (with data) as the synchronization signal. The data word indicates whether the
system is operating in a synchronous or an asynchronous manner. No buffer semaphores or
other handshaking are required with the mode command since only a single data word is
transmitted. The time to perform the cycle synchronization is approximately 60 Osec. This
time estimate is based upon the 1553 bus speed only and contains no allowance for software
overhead. The time required to broadcast the synchronization command is relatively

insignificant compared to the other operations which the 1553 Monitor performs, and may
be effectively neglected.

2. Scan for buffer status - Obtain the status of the client/server semaphores on each RT. Use the
subaddresses specified in table 2. Query each active RT for the current value of the
semaphores. There are actually two command/response transactions for each RT query. One
for each semaphore value. The time to complete a query of all RTs is

(2)(88)k Osec ffi 176 Osec

where k is the number of active RTs, and the 88 Osec constant is obtained from the 1553

standard (88 = 68 + 20N, where N=I [the number of data words requested]). This is the
absolute minimum value that can be achieved and includes no software overhead.

3. Obtain data from RTs - Obtain a data packet from each RT that has new data (as indicated
by the value of the semaphore obtained in step 2). Read 1 - 28 data blocks of 32 words using
the 1553 RT-to-BC command. Each RT uses

(28)(68 + 20 N) Osec

per message, so fiN, the number of data words, is 32, then the total time to complete region
3 would be 19824k Osec, or 19.8k msec., where k is the number of RT-to-BC transfers. This

analysis assumes that there is a 00sec inter-message gap.

Network DriverDetailed Design
19

4. Update semaphore values - The BC updates the semaphores for every RT from which a
message was received. This is accomplished in

88k Os_

5. Deliver message to RTs - Perform requested BC-to-RT transfers ffRT buffers are available.
Also, set the RTs semaphore that indicates that new data has arrived. The maximum time to
completely deliver all messages would be

(19.8 + .88)k msec. = 20.58k msec.

6. Idle time - The 1553 Monitor waits for the start of a new cycle.

Assuming that a network has the maximum number of devices attached (k = 29), and that every
RT has data to be read, then the minimum possible cycle time for region 1 through 4 is

tmax = (29)(176 + 20580 + 88 Osec)

tmax __--(29)(20.0 msec)

tma x = 580 msec

If each data packet contains the latest data scan from the RT, then the 580 msec cycle is
sufficient to meet the control program's one second data acquisition requirement (see General
Design Constraints). However, if just a single packet in the data stream contains an aperiodic
message (e.g. a cantion/waming message), then the delay between complete data updates
increases to 1.6 second, which fails to meet the one second specification. A cycle time of less that
500 msec is uecess_y to adequately handle the periodic data scans from the RTs, the aperiodic
message traffic from the RTs, and commands issued from the BC.

The best solution for reducing the cycle time of the 1553 BC to less than 500 _ is to limit the
number of RTs allowed on the bus. If the number of RTs is reduced to 10, then the minimum
cycle time becomes

tmax -- (10)(20.0 msec) = 200 msec

Allowing an increase in the cycle time from 200 msec to 250 msec introduces enough idle time
into the cycle for the BC to perform two BC-to-RT transfers.

1553 Monitor - RT Mode

A 1553 Monitor task operates on the remote terminal node also. Its operating cycle is shown in
figure 12.

Time ,_

Figure 12 - RT cycle

Cyclic operation of the 1553 Monitor in RT mode is simpler than it is in BC mode. The figure
shows that there are only 4 unique regions in the cycle. The beginning of the RT cycle is
currently NOT synchronized with the beginning of any other controller's cycle (i.e. the RT cycle
does not necessarily start at the same time as the BC cycle, or at the same time as any of the other
RTs). The 1553 Monitor, in RT mode, performs the following tasks.

Detailed Design Network Driver
20

1. Copy a message destined for the BC into the RT buffers - If the buffer used for tmn_erring
data from the RT to the BC is empty and new data is available for transfer, then copy the
data to the correct RT buffers and then set the semaphore notifying the BC that new data is
available.

2. Copy a message received from the BC into a temporary buffer - If the BC has set the
semaphore that indicates that a new message has been transferred to this RT, then save the
message into a local buffer and reset the semaphore.

3. Check for a change in synchronization state - Check the value of the data word sent from the
BC in the most recent synchronization command. If its status has changed, then save the
new value.

4. Idle time - Wait for the start of the next cycle.

Private Types

The Network Driver subaddress assignments (as specified in table 1) are part of the specification of
private types. The specification also contains the data type packet. A packet is used as a temporary store
for items to be transmitted over the network. The size of the store is determined by the number of 1553

subaddresses ailocated. It currently consists of 28 data blocks (see table 1).

Internal Structures, Variables, and Constants

The 1553 network driver maintains several state variables which contain information about the current

1553 network configuration. These variables are

• Active_Node_List - Used when the controller is operating as a BC. The Active_Node_List indicates
which RT addresses responded to a query for node identifiers. This variable is setup during execution
of the Initialize_Network procedure.

• Net_Started - A flag indicating whether the Initialize_Network procedure has successfully executed.
Many procedures raise exceptions if this value has not been set to true.

• Packet_Request - A block of messages which contain the sequence of 1553 commands necessary to
transfer a data packet from a RT to the BC.

. Query_RT For Data and Query_RT_For_Available_Buffer - A block of messages that are sent out in
region 2 of figure 11, requesting status of each RT buffers. The number of messages depends upon the
number of nodes within the Active_Node_List.

• Packet_Response - Contains the lookup keys necessary for retrieving the data requested via the

Packet_Request messages.

• Packet_Size_Lookup - A global variable that is Used to contain the size of the packet currently being
retrieved.

• Output_Pipe - A buffer where messages received from RTs are stored temporarily until they can be
retrieved by a task invoking the get procedure.

Internal Procedures

• Poll Network

* RT_Query

Scan each 1553 address for a valid node identifier. Save the identifier and

address if a valid response is obtained. Also, construct the blocks of messages
which are periodically used to obtain RT buffer values.

Restore the block of messages that query the semaphores at all active nodes
(both RT-to-BC buffers and BC-to-RT buffers). Construct a list of nodes which

require servicing.

Build_Packet_Request
Construct the Packet_Request variable.

Detailed Design
21

Network Driver

Process Packet
w

ServiceBoard

PoH For Packe_

• Initialize RT Mode

• Setup. RT Packet

• Send BC Packet

• Copy the data obtained from a RT to the internal buffer Output_Pipe.

• This generic procedure is used to place a particular set of messages into the
1553 board, transmit the block, and then process any responses. It makes use of
the controller's double buffering capabilities. The procedure returns a list of RT
nodes which require further processing.

• An instantiation of the Service_Board procedure. Uses Build_Packet_Request
to construct a sequence of messages which obtain data packets, and uses
Process_Packet to save the responses.

• Confirm_Packet_Read
An instantiation of the ServiceBoard procedure. Sets up messages clearing RT
semaphores and checks for any resulting errors.

Set the node identifier and allocate the RTs buffers between those that are

shared and those that are not shared. Also sets the initial state of the semaphore

flags. Finally, Initialize RT Mode clears the 1553 busy flag.

Copy a data packet into the proper RT buffers.

Build a data packet into a sequence of 1553 messages and then start
transmission.

Data Flow - BC Mode

A data flow diagram for the Network Driver operating in BC mode is show in figure 13.

Bubbles I - 6 represent the public processes available through the package specification. Bubbles 7 - 12
represent processes which occur within the 1553 Monitor task. The arrows indicate how the processes

communicate with each other and with the public data stores (which are represented as two horizontal
lines). Communication between bubbles 7 - 12 and the low level 1553 driver are not explicitly indicated.

The cyclic operation of the 1553 Monitor is initiated by the cycle start signal, which is provided by the
Ada runtime system (when the appropriate time delay has elapsed). The monitor operates as previously
discussed (and shown pictorially in figure 11). A cycle consists of: transmission of a 1553 synchronization
signal (bubble 7), a query of active RT nodes (bubble 8), and the processing of messages from nodes with
data (bubbles 9, 10, and 11). The transfer of messages from the BC to an RT is made near the end of each
cycle. The cycle is completed when the monitor enters a quiescent state and waits for the next cycle start
signal.

Users obtain data from the monitor via the data stores Output_Pipe and Is_Synchronized. The use of
temporary stores permits the 1553 Monitor to continue operation without requiring inter-task rendezvous.
Data and control are provided to the monitor through the Synchronize, Unsychronize, and Transmit
processes. Bubble 11 (Transmit Packets) and bubble 12 (Change_Sync_Mode) are able to process input
flows from the user procedures ff they exist, but will not block if they are empty.

To maintain the requirement for cycle completion time, the flow from bubble 3 (Transmit Packets) is
restricted so at most two transmission can occur per cycle.

Data Flow - RT Mode

A data flow diagram for the Network Driver operating in RT mode is shown in figure 14.

On this diagram bubbles 1 - 4 represent public processes that may be invoked when the driver is operating
in RT mode. Several of the data stores reside in the memory regions contained within the 1553 board (as
shown by the shaded rectangle). These regions are actually accessed through processes provided by the
low level 1553 driver package, but these processes have been removed from the diagram for the sake of
clarity. It is easier to understand the overall data flow without them.

Operation of the 1553 Monitor in RT mode is similar to its operation in BC mode. The monitor idles until

it activated by the Ada runtime system. It then examines the semaphore, checking for the existence of a
free memory buffer. If an empty buffer is indicated, a message is copied onto the board. Next, the monitor

Detailed Design Network Driver
22

checks for messages from the BC. If messages are present, they are copied into a temporary buffer (the

outputpipe) and the buffer semaphore is reset. Finally, the monitor examines the most recent value of the

synchronization data word. If the value has changed since the last cycle, then the new value is storecL

!

®

®

Figure 13 - Network Driver data flow diagram (BC mode)

::._':::::g::::_:::::8:::._::_:$:: _:__8 :::::: $: _.::::
i_!_:_!_!!!!!_._i_i_:_:$!:-_::_:_:i:_$:i::::::: :_ ')::'_:
:_,. . .':::::.':

..................... iiiiiiiii:.

:::::::::::::::::::::::_ii':ii!: -

@
Figure 14 - Network Driver data flow diagram (RT mode)

Network DriverDetailed Design
23

Network Utilities

Network Utilities Package Detailed Design

This section describes the internal design features of the Network Utilities package.

Private Types

There are no private data types defined within the Nework_Utilities package.

Internal Structures, Variables, and Constants

• The_Lookup_Table - A table containing the node identifiers and object names of all testbed remote
objects. This table is an object obtained from the instantiation of the generic
Unbounded_Cached_Map package which is described in [5].

• The_Semaphore - An Aria object which is used to regulate access to TheLookupTable. It is an
object obtained from the Semaphore package describod in [5].

Internal Procedures

• Send Line

• Hash Task Name

Used to send a text message to the operator.

A function used by the map package which hashes a text string to a positive
number. The hash function obtains the numerical value by XORing every
character in the object name string together. This is a quick way to generate a
single value that is dependent on every character in the string.

Low Level 1553 Driver

The low level 1553 driver is a package of Ada routines for accessing the lowest level registers and
memory locations of the 1553 controller board. The package alsoprovides routines for composing,
transmitting, and re_iving 1553 messages. No mutual exclusion among users of this package is provided.

Three groups of routines are contained within the low level package: those for use with controllers
initialized into BC mode, those for use with controllers initialized into RT mode, and general routines,
whose use is independent of the controller mode.

General Routines

• Set_Mode Set the board to operate in either BC or RT mode. IfRT mode is selected then,

initially, the 1553 busyflag is set. Use the RT procedure Clear_Busy_Flag to
enable error-free message transactions.

• The_Mode Return current operating mode of 1553 board.

BC Routines

To transmit a message from the 1553 board, when operating as a BC, use the sequence of steps identified
in figure 15.

Detailed Design
24

Network Utilities

Q ClearBuffer

Board

usy))

Setup \ o_,o / Board
Complete _ Inactive

Figure 15 - Operation of board in BC mode

Send
Message

Operating the 1553 driver in this manner takes advantage of a double buffering scheme employed on the
1553 board which allows one buffer to be setup and configured while another one is being transmitted. To
use this scheme, first clear the board's inactive buffer (as shown by the transition from bubble 1 to bubble
2). Then, store a sequence of 1553 messages into the buffer (as shown in bubble 2). These messages will
be sent as a continuous "block" of 1553 messages. Now, before initiating the transmission, ensure that the
board is idle and has finished transmitting any previous block of messages. It may be necessary to check
the board's status several times (as shown by the loop both starting and ending in bubble 3). To send the

block of messages, make the new block the active buffer (bubble 4), and start transmission.

If any of the messages were requests for a RT to transmit data back to the BC, then that data must be
retrieved before a new series of new messages is configured. In this case, replace bubble 5 of figure 15

with those shown in figure 16.

Board

usy

inBaC_ivrd >_ Retrieval
Complete

Figure 16 - BC Data Retrieval

A description of the routines necessary for control of the board in BC mode (as shown in figure 15 and

figure 16) are given below.

To Clear the Inactive Buffer

• C/ear__Buffer Clear the inactive buffer.

To Build the 1553 Message Buffer

• Build_Receive_Data__Message
Construct a 1553 message with 1-32 words of data. Set the 1553 bit which
indicates that the RT will be receiving data from the BE. Store the message into
a 1553 buffer, but do not send the message. This procedure may be called

repetitively to build a sequence of messages that will be sent over the 1553 bus.

• Build_Receive_Data_Message
Same as the procedure above except optimized for transmitting a single word of
data from the BC to an RT.

Low Level 1553 DriverDetailed Design
25

• Build_Transmit_Data_Message

Construct a 1553 message requesting that 1-32 words of data be transmitted

from an RT. Store the message into a 1553 buffer, but do not send the message.

This procedure may be called repetitively to build a sequence of messages that

will be sent over the 1553 bus. It may be interspersed with messages

constructed using the Build_Receive_Data_Message procedure. This procedure

returns a lookup key that is used to obtain the data that is transmitted from an

RT in response to this message.

• Build_Transmit_Data_Message

Same as the procedure above except that the message is not stored in a buffer

on the 1553 board, but instead, to a data structure from which it may be

retrieved for future use. See the description of the Restore_Message_Block

procedure below.

• Build Mode Code Without Data

Construct a 1553 message which transmits a 1553 mode code. Store the

message into a 1553 buffer, but do not send the message. This procedure may

be called repetitively to build a sequence of messages that will be sent over the

1553 bus. It may be inters_rsed with any of the other procedures which store

messages into the 1553 board's buffer (Build_Receive_Data_Message or

Build_ Transmit_Data _Message).

• Build Mode Code With Data

Same as the procedure above except that one word of data may be included with
the mode code message.

To Save and Restore a Block of Messages

For some sequences of messages that are often used, it may make sense to save and restore the entire block

of messages instead of repetitively building up the message block with the routines described above.

Routines to save and restore message blocks are described below.

• Save_Message_Block Save the status of the current buffer. Must be used before the buffer has been
made active.

• Change_Destination_Address_Of

This routine changes the destination RT address of a saved block of messages

to a specific value. This procedure is used to repetitively direct a block of

messages to several different RTs. It operates on a block of messages that has
been previously saved with the Save_Message_Block procedure.

• Change_Block_Destination_Address

This procedure is the same as the one above except that it operates on the block

of messages that has been built up in the controller's internal buffer.

• Restore_Message_Block

Restore a sequence of messages that had been previously saved by the

Save_Message_Block routine.

To Check the Board's Status

• Message_Complete Returns true when the 1553 board has completed processing of any previous
message and is now idle.

To Send a Message

• Switch BC Buffers Notify the 1553 board that a new buffer is to be used for 1553 message
transmission.

Detailed Design Low Level 1553 Driver
26

• Send_Message_Block Initiate the transmission of a block of 1553 messages. The 1553 controller card
will continue the message transmission after the routine has completed.

To Retrieve Data Transmitted from an RT

• Data Used to retrieve data that was sent from an RT in response to a

Build_Transmit_Data_Message. A lookup tag obtained from the

Build_Transmit_Data_Message is used to obtain the correct data item.

BC Exceptions

Problems that may occur in calls to BC routines are

• Clear_Buffer No problems should occur.

• Build_ReceiveData__fessage
Raises Invalid Mode ffthe controller is not in BC mode. Raises Overflow ffthe

message buffer is filled.

• Build_Transmit_Data_Message
Raiseslnvalid Mode if the controller is not in BC mode. Raises Overflow ffthe

message buffer is filled.

• Build Mode Code Without Data

RalseslnvalidMode ffthe controller is not in BC mode. Raises Overflow ffthe

message buffer is filled.

• Build Mode Code With Data

- - - RaiseslnvalidModeffthecontrollerisnotinBCmode. RaisesOverflowffthe

message buffer is filled.

• Save_Message_Block Raises Invalid_Mode ff the controller is not in BC mode.

• Change_Destination_Address_Of
Raiseslnvalid Mode ffthe controller is not in BC mode.

• Change_Block_Destination_Address
Raises Invalid Mode ffthe controller is not in BC mode.

• Restore_Message_Block
Raises Invalid Mode if the controller is not in BC mode.

Message_Complete No problems should occur.

Switch BC Buffers Raises Busy if the 1553 controller has not finished processing a buffer.

Send_Message_Block Raised Invalid_Command if buffer of commands is not formatted correctly.

Data No problems should occur.

RT Routines

The 1553 card, initialized as an RT, contains an area of memory that can be accessed by both the local

control computer and by the remote BC (as described in the 1553 Overview). This memory area consists

of thirty blocks of thirty-two data words. These blocks are known, in this package specification, as RT

Buffers. Each RT buffer corresponds to a particular RT subaddress. ART buffer may be configured so that
the same area of memory is used for both receiving data from the BC and for transmitting data to the BC.

ART buffer may also be configured so that a different data area is used for receiving than for

transmitting. If different data areas are used, then the same subaddress may be used to both send and

receive data. Data to be sent to the BC is placed in the area designed for RT-to-BC transfers, and data

received from the BC is obtained from the area designated for BC-to-RT transfers.

Low Level 1553 DriverDetailed Design
27

A buffer that is used for both RT-to-BC transfers and BC-to-RT transfers is shared between the two
transfer types. Initially, all thirty RT buffers are shared.

Once the RT buffer configuration is set, they are read/written by the local control computer through the
Set_Data_Block and Get_Data_Block routines as shown in figure 17 and figure 18.

Local
CPU

Set_Data_Blocg

Get_Data_Block

RT-to-BC

BC-to-RT

Bus
Controller

Figure 17 - Reading/writing a shared RT buffer

Local
CPU

Set_Data_Block

GeCData_Block

RT-to-BC

BC-to-RT

Figure 18 - Reading/writing a unshared RT buffer

Bus
Controller

A brief description of each RT routine is given below.

* Share RT Buffer Share the memory area for this particular subaddress with both RT-to-BC
transfers and BC-to-RT transfers. Initially, all subaddresses use a shared RT
buffer.

• Unshare RT Buffer Use a different memory area for RT-to-BC transfers than for BC-to-RT
transfers.

• Set_Shared_Block Set memory within a shared memory block. This procedure may only be used if
the RT busy flag has been set. Otherwise, it is possible for the BC to read or
write to the block at the same time the RT is writing to it; resulting in a
corrupted data structure within the RT buffer.

* SetData_Word Set the first word within a shared memory block. This procedure is a version of
the Set_Shared_Block procedure that is optimized for modifying a single data
word. It is not necessary to set the busy flag before using this procedure since
only a single word is being modified and no possibility of data corruption
Occurs.

• Set_Data_Block Set memory within an unshared memory block.

• Get_Data_Block Get data within the memory block at this subaddress. This procedure may be
used on both shared and unshared blocks.

• Get_Data_Word This routine is the same as the one above except that it is optimized for transfer
of a single data word.

Detailed Design Low Level 1553 Driver
28

• Set_Busy_Ftag

• Clear Busy_Flag

• RT Address

RT Exceptions

• Share RT Buffer

• Unshare RT Buffer

• Set Shared Block

• Set Data Word
-- w

• Set Data Block
m

• Get Data Block

• Get Data Word

• SetBusy_Flag

• Clear_.Busy_Flag

• RT Address

This routine is used to set the RT's busy flag, preventing the BC from

successfully delivering a message to this RT. The node operating as the BC

receives an error indicating that a message command failed due to a busy
condition in effect at the destination RT. The busy flag is initially set by the

Set Mode routine.

Use this routine to clear the RT busy flag. Ensure that the RT's buffers have

been initialized to contain valid data before invoking.

Return the local RT address.

Raises Invafid_Mode ffthe controller is not operating in RT mode.

Rinses Invalid_Mode ff the controller is not operating in RT mode.

Raises Invalid_Command ffthe block has not been shared or ffthe RT busy

flag has not been set.

Raises Invalid_Command ffthe data block is not being shared.

Raises Invalid_Command if the data block is being shared.

Rinses Invalid_Mode ff the controller is not operating in RT mode.

R_ses Invalid Command ff the data block is not being shared.

Raises Invalid Mode if the controller is not operating in RT mode.

Raises Invalid_Mode ffthe controller is not operating in RT mode.

Raises Invalid_Mode if the controller is not operating in RT mode.

Low Level 1553 Driver Detailed Design

The low level 1553 driver provides the software interface to the DDC BUS-65515 controller card. The

card is configured to operate using an 8K-byte region of memory that is jumper selectable. In the testbed

control computers, the 1553 card's memory is configured to reside at memory segments CC00H - CDFFH.
The card is described in detail in the reference manual [4]. The terminology and definitions introduced

there will be used throughout this description. Please note that any memory locations specified are offsets

from the base segment of CCOOH.

DDC BUS-655t5 Operation

The DDC 65515 card, in this implementation, operates in one of two poss_le modes: bus controller or

remote terminal. Both modes provide the capability of double-buffering messages or data.

BC Mode

Data Blocks

Data for 1553 messages is stored in memory offsets 280H - 1FFFH. This memory region provides

58 data blocks of 64 words. Each data block is big enough to contain one 1553 message, since the

largest 1553 message, Receive_Data_Block, has a maximum size of 36 words.

Descriptor Stacks

To provide optimum utilization of the 1553 board's double buffering scheme, the descriptor

stacks are configured to provide an equal allocation of data blocks between the two available

buffers. The descriptor stack for buffer A is set so it contains references to data blocks 1 - 29, and

Detailed Design Low Level 1553 Driver Detailed Design

29

the descriptor stack for buffer B is set to contain references to blocks 30 - 58. This setup allows
each buffer to issue a maximum of 29 messages at one time•

RT Mode

Data Blocks

Data to be store/retrieved from 1553 subaddresses is kept within data blocks at memory locations
400H - 1EFH. There are a total of 106 data blocks of 32 words. The data blocks are divided into

three regions of 32 blocks. Region 1 (blocks 1 - 32) is used for data transfers to those
subaddresses configured as shared buffers. Region 1 is also used for BC-to-RT transfers to
unshared buffers. Region 2 (blocks 33 - 64) and region 3 (blocks 65 - 86) are used for RT-to-BC
transfers to unshared buffers. Region 2 is used when buffer A is active and region 3 when buffer
B is active. The remaining memory blocks are unallocated.

RT Lookup Tables

There are two memory regions on a RT that are used to determine where data (transferred via a
1553 message) is to be stored. These memory regions are known as the RT lookup tables. One
table is used when buffer A is active and the other when buffer B is active. The lookup tables are
used to map RT subaddresses to particular data blocks. Each lookup table contains two entries for
each of I - 29 subaddresses. One entry is used for RT-to-BC transfers and the other one is used
for BC-to-RT transfers.

Initially, the software sets the lookup tables to reference a single set of data blocks (blocks 1 - 32),
as shown in figure 19. Each subaddress is mapped to its own unique data block, but that block is
used for both RT-to-BC transfers and for BC-to-RT transfers. The arrows designate which RT
buffer that will be used when the BC stores/retrieves data at this subaddress. The same blocks are
used for RT-to-BC transfers as for BC-to-RT transfers.

BC-to-RT

RT-to-BC

Lookup Table A Data Blocks Lookup Table B

Region
3 1

_ Region _
35 2 3,'

_7_6Regi°n s"

BC-to-RT

RT-to-BC

Figure 19 - Lookup pointers for shared blocks

This shared buffer mode may be changed so that the transfers use different data blocks. If, for
example, RT buffer I is place into unshared mode, then the lookup tables are changed so that
subaddress 1 maps into two different data blocks. RT-to-BC transfers use data block 33 and BC-
toRT transfers use data block I. Figure 20 shows, for example, the configuration of the lookup
pointers when the buffers for subaddresses 0 - 2 are in shared mode and those for subaddress 3 -
31 are in unshared mode.

Detailed Design Low Level 1553 Driver Detailed Design
30

BC-to-RT

RT-to-BC

LookupTableA

o1 Region
/ 1

34Region35 2

Data Blocks

3,'

Region 6_
,'7 3 6;

Lookup Table B

"1

3[1 31

Figure 20 - Lookup up pointers for mix of shared and unshared buffers

BC-to-RT

RT-to-BC

Low Level 1553 Driver Internal Design

Private Types

The low level driver defines the following private data types

• Lookupfley - A reference pointer to data that will be obtained once a response to a sequence of 1553
messages has been received. The lookup key simply points to the data block which will hold the
response. A lookup key is obtained from the Build_Transmit_Data_Message procedure, and the
returned data is obtained by using the key in the Data function.

• Message_Block - A structure which is used to hold a sequence of 1553 messages.

Internal Structures, Variables, and Constants

• Address_Parity - An array containing the values even or odd for each of the 1 - 30 valid 1553
addresses. This array is used to set the correct parity value when the driver is operating in RT mode.

• Command word format - A number of variables (address_offset, address_bits, TR_offset, TR_bits,

subaddress_offset, subaddress_bits, count_offset, countbits, receive_bit, and transmitbit) are used
to define particular bit fields within the 1553 command word.

• Descriptor Stack - The format of the DDC-65515 board's descriptor stack is define by the structures
BC_Descriptor_Stack_Element, RT_Descriptor_Stack_Element, BC_Descriptor_Stack, and

R T_Descriptor_Stacl_

• Lookup Table - The RT lookup table structure is defined by the Lookup_Array and Lookup_Table

types.

• Message formats - Structures used to construct 1553 messages are define by the types
Receive_Data_ Command, Transmi tData_ Command, Mode_Code_Command, and
Unspecified_Command.

• Memory allocation and register definitions - Allocation of memory to match that of the DDC 65515
board is determined by a variety of constants. Some constants define those areas to be used when

operating in BC mode and others define areas for RT mode. There is also an area that is used by beth

Detailed Design Low Level 1553 Driver Detailed Design
31

modes. These constants are defined within the code section identified by the heading Memory

Allocation for 1553 Board.

• Queue_Info - A smcULre which is used to manage 1553 message blocks. Oueue_Infois usedto insert
new messages into the proper area of the board's memory and to prevent overflow. Two state variables
Queue.A_Info and Queue_B_Info are used to control the message construction within the board's two
memory buffers.

• RT_Block..ls_Shared - This state variable maintains information regarding each of the board's RT
buffers. Those that are operating in shared mode (as shown in figure 17) are indicated by a true value
in this variable.

Imernal Procedures

• Current_Buffer

• Inactive_Buffer

• Queued_Messages

• Status_Of

Access the 1553 board's register and return the value of the currently active
buffer (A or B).

Return the value of the currently inactive buffer.

Return the number of messages currently queued into the specified buffer.

Operates on the 1553 status word and returns a value indicating whether an
error occurred.

Diagnostic and Utility Packages
Several diagnostic and utility packages are used by 1553 communication software. The Semaphore
package and the Map package are used by the Network_Utilities package to control operation and access
to the message routing table. These packages are general purpose utility packages that are not directly
related to the 1553 messaging system. These packages are described in detail in [s].

The diagnostic package, C_Parallel_Port, is used by several packages with the testbed system (see figure
8). It sends a voltage signal onto one of the controller's parallel port lines that may be detected and stored
by a laboratory logic analyzer. These signals are useful for debugging and testing the Ada code. Its coding
is not detailed within this document.

Detailed Design Diagnostic and Utility Packages
32

Test Results

Timing and verification statements were added to the 1553 Network Driver code so that its operation

could be analyzed. The added statements generate voltage signals on the control computer's parallel port

that may be captured and displayed by a digital logic analyzer. The signals that are generated produce a

series of output signals that are used to determine that actual execution time of various sections of the Ada

code. Table 3 provides a listing of the execution times that were obtained from a bus controller during a

typical sequence of network transactions.

The processes listed in columns one and two of table 3 are the same as those shown in figure 13. Column

three, 1553 Transmission Time, provides the time (in micro-seconds) that the 1553 bus is busy during the

process indicated in columns one and two. Columns four and five show the amount of time that was spent

by the 1553 driver setting up the controller board and, if ne_ssary, retrieving and copying any responses.

The final column, Overhead, indicates how much time was spent during setup and retrieval as a

percentage of the actual bus transmission time.

#

7

8a
8b

8 (a+b)
g
11

Prm

Name

Broadcast Synchronization Command
Query RTs for new data (single node)

Query RTs for free buffer (single node)
RT Query (total)

Poll for Packets from RTs
Transmit Packet to RT

1553 Transmission

Time (tame)

6O
88
88

176
19800
2O68O

1563 Message Processing

setup (usec)

266
3O2
416
718

4262
734

Rmpom_ (umc)

0
0

0
0

2384O
0

Overhead

%

343%
243%
373%

3O8%
42%
96%

Table 3 - Network Driver execution times

Test Results 33

Conclusion

A deacription of the 1553 communications software for the I.aRC Electrical Power System testbecl has
been presented. A description of each component of the software, as well as major portions of the Ada
code itself, have also been provided. This infonnalion is intended primarily for use in future upgrades so
that an accurate description of the present design and implementation is available.

Conclusion Diagnostic and Utility Packages
34

References

1 J.F.Soeder and R.l.Frye, "Overview and Evolution of the LeRC PMAD DC Test Bed", IECEC-92,

Proceedings, August, 1992.

2 A.N.Bacz and G_L_mnach, "Description of the Control System Design for the Space Station Freedom

PMAD DC Testbed", IECF, C-91 Proceedings, August, 1991.

3 K.Ludwig, T.Wright, and M.Mackin, '3)¢scription of Real-Time Ada Software Implementation of a

Power System Monitor for the Space Station Freedom PMAD DC Testbed", IECEC-91 Proceedings,

August, 1991.

4 DDC ILC Data Device Corporation, "MIL-STD-1553 Designers Guide", 1982.

5 Booch, Grady, "Software Components with Ada", © 1987, Benjamin/Onnmings Publishing Co.

Conclusion Diagnostic and Utility Packages
35

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reportingbuKlenlot this cbllecticno4 information is estimated to average 1 hourper response, inciudk'q;the time for reviewing thslruetions, searchingex_ing data sourt_s,
gathering and maintainingthe data needed, and completingand reviewing the collectionof tnfocm_ion. Send ¢ommant$ regarding this burdenestimate or any ether aspect O4this
colisetlon Of Inlomlalk_. including suggestionsIo*' reducing this burden, to WashingtonHeadqualters Services. uireetorate tot Infomlaticn Uc_eratio¢_and Reports, 1215 Jeflersoct
Davis Highway. Suite 1204, Arlingtofl,VA 22202-4302. and to the Off'meO4Managementand Budget, Paperwork ReductionProject(0704-0188), Washington. DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

February 1995 Technical Memorandum
4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Description of a MIL-STD-1553B Data Bus Ada Driver for the
LeRC EPS Testbed

6. AUTHOR(S)

Michael A. Mackin

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS{ES)

National Aeronautics and Space Administration
Lewis Research Center

Cleveland, Ohio 44135-3191

9. SPONSORING/MONITORINGAGENCYNAME(S)ANDADDRESS(ES)

National Aeronautics and Space Administration

Washington, D.C. 20546-0001

WU-478--29-10

8. PERFORMING ORGANIZATION
REPORT NUMBER

E-9478

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA TM- 106866

11. SUPPLEMENTARYNOTES

Responsible person, Michael A. Mackin, organization code 5450, (216) 433-5326.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified -Unlimited

Subject Category 62

This publication is available from the NASA Center for Aerospace Information, (301) 621--0390.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This document describes the software designed to provide communication between control computers in the NASA Lewis
Research Center Electrical Power System Testbed using MIL-STD-1553B. The software drivers are coded in the Ada
programming language and were developed on a MSDOS-based computer workstation. The Electrical Power System

(EPS) Testbed is a reduced-scale prototype space station electrical power system. The power system manages and
distributes electrical power from the sources (batteries or photovoltaic arrays) to the end-user loads. The electrical system
primary operates at 120 volts DC, and the secondary system operates at 28 volts DC. The devices which direct the flow of
electrical power are controlled by a network of six control computers. Data and control messages are passed between the
computers using the MIL-STD-1553B network. One of the computers, the Power Management Controller (PMC),
controls the primary power distribution and another, the Load Management Controller (LMC), controls the secondary
power distribution. Each of these computers communicates with two other computers which act as subsidiary controllers.
These subsidiary controllers are, in turn, connected to the devices which directly control the flow of electrical power.

14. SUBJECT TERMS

MIL-STD--1553B; Network communication; Data and control messages; Ada driver

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

39
16. PRICE CODE

A03
20. LIMITATION OF ABSTRACT

Standard Form 298 (Rev. 2-89)

Prescribed by ANSI SId. Z39-18
298-102

